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Introduction: Climate change & plastic pollution

 Temperature has increased by 0.8 ºC in the last decade Accord de Paris (2015) ΔT<1.5 ºC

 Methane (CH4) constitutes the 2nd most dangerous GHG (1 CH4 = 24 CO2)

 Concentration in the atmosphere increases at a yearly rate of 0.2-1 %

 Energy recovery is only possible for CH4 emissions >20 %v/v
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Novel CH4 abatement 

technologies are required



Introduction: Climate change & plastic pollution
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Low-cost, biodegradable and 

renewable polymers are needed

 Yearly plastic production: 335,000,000 ton:

 < 1% of bioplastics

 < 50% of bioplastics are biodegradable

 50 % of single use plastics

12% 9%

79%

Incinerated Recycled Environment



Introduction: Methanotrophs
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N
P

PHA

Type II 

methanotrophs can 

use CH4 as the only 

carbon and energy 

source

Nutrient limitation 

induces 

intracellular PHA 

accumulation

Some species 

accumulate 

20-60 %w/w



 Comparable characteristics to PP and PE

 Reduced environmental impact and positive carbon footprint

 Produced from renewable resources and waste streams (4 - 20 €/kg):

 Carbon source constitutes 40 - 50 % of total production costs

 CH4 emissions are free!!

 Poly-3-hydroxybutyrate (PHB) is predominant in PHA accumulating

methanotrophic bacteria

 Applications in packaging, medicine and agriculture

Introduction: Polyhydroxyalkanoates (PHA)
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Introduction: Previous work

 Sphagnum Mosses and activated sludge were used as inoculum

 PHA accumulation under P limitation remained <15 %

 T is a selective pressure for enrichment of PHA accumulating bacteria under P limitation :

 0.08 % Methylocystis 17-34 % Methylocystis



Introduction: Previous work
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 PHA increase with T during N limitation

 N limitation >> P limitation

 Effective enrichment: ~30% Methylocystis

 No effect of temperature during PHA accumulation
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 Biomass enriched at 30 ºC showed lower CH4 and N 

requirements



Objectives

Selecting optimum conditions for CH4 bioconversion into PHA in a 

bioreactor under nitrogen limitation

Assessing the effect of pH on CH4 abatement and PHA 

accumulation (pH = 5.5, 7, 8.5 and 10)

Evolution of microbial diversity under nitrogen limitation at 

different pH
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Materials & Methods: Experimental set-up

 Biostat Sartorius

 Volume = 2.5 L

 Mixing = 600 rpm

 EBRT = 60 min

 O2:CH4 = 2

 pH = 5.5, 7, 8.5 and 10

 T = 25 ºC

 N limitation
 Whittenbury modified

 Pyrosequencing analysis
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Air + Biogas

Off gasCH4 = 9 %v/v

PHA-enriched

biomass

pH 

control

HCl / NaOH
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Results: Nitrogen depletion
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 Slower growth at pH = 5.5

 Similar growth at pH = 7 and 8.5

 No growth observed at pH = 10
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 pH = 8.5 supported the highest CH4

abatement and no elimination was 

observed at pH = 10

 Similar CH4 abatement at pH = 5.5 and 7

 System is mass transfer limited:
 Na+ Bubble coalescence

 CH4 abatement is maintained ~48 h after 
N depletion (PHA accumulation)
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Results: CH4 abatement



Results: PHA accumulation
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 PHA accumulation started 

immediately after N deprivation

 PHA accumulation decreased with pH
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t = 0 pH = 5.5 pH = 7 pH = 8.5

Methylocystis
Sediminibacterium
Methylovorus
Flavobacterium
Pseudomonas
Acidovorax
Rhodobacter
Stenotrophomonas
Caulobacter
Sphingomonas
Hyphomicrobium
Methylobacterium
Terrimonas
Microscillaceae
Mesorhizobium
Rhizobiaceae
Neochlamydia
Sphingopyxis
Dokdonella
Pseudoxanthomonas

 Methylocystis 85-90 % at pH 5.5 and 7 explain the higher PHA accumulated

 Low pH constitutes a strong selective pressure for Type II methanotrophic bacteria.

Results: Sequencing
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34 % 85 % 90 % 14 %



Conclusions

 CH4 abatement is enhanced at high pH by the higher salinity of the 

medium 

 CH4 abatement is maintained during growth and PHA accumulation stages

 Low pH values promote PHA accumulation

 Low pH induces a strong selective pressure for PHA accumulating 

microorganisms
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